

## EXAMINATIONS COUNCIL OF ESWATINI Eswatini General Certificate of Secondary Education

| CANDIDATE<br>NAME                 |                                                           |                     |                                                                 |                      |                                            |
|-----------------------------------|-----------------------------------------------------------|---------------------|-----------------------------------------------------------------|----------------------|--------------------------------------------|
| CENTRE<br>NUMBER                  |                                                           |                     |                                                                 | CANDIDATE<br>NUMBER  |                                            |
| PHYSICAL SC<br>Paper 1 Short A    |                                                           |                     |                                                                 | (                    | 6888/01<br>October/November 2021<br>1 hour |
| Candidates ans                    |                                                           | ·                   |                                                                 |                      |                                            |
| READ THESE                        | INSTRUCTION                                               | S FIRST             |                                                                 |                      |                                            |
| Write in dark blue You may use as | ue or black pen<br>n HB pencil for a<br>ples, paper clips | i.<br>any diagrams, | and name in the s<br>graphs, tables or re<br>glue or correction | ough working.        |                                            |
| Answer all que                    | stions.                                                   |                     |                                                                 |                      |                                            |
| You may use an                    |                                                           |                     | working or if you do                                            | o not use the approp | riate units.                               |
| A copy of the P                   | eriodic Table is                                          | printed on pag      | e 11.                                                           |                      |                                            |
| The number of                     | marks is given                                            | in brackets [ ]     | at the end of each                                              | question or part que | stion.                                     |
|                                   |                                                           |                     |                                                                 | -                    | For Examiner's Use                         |
|                                   |                                                           |                     |                                                                 |                      |                                            |

This document consists of 11 printed pages and 1 blank page.

© ECESWA 2021 [Turn over

| 1 | Units o | of quantities | are c | derived | from | SI base | units. |
|---|---------|---------------|-------|---------|------|---------|--------|
|---|---------|---------------|-------|---------|------|---------|--------|

| State the base unit for current. |    |
|----------------------------------|----|
|                                  | [1 |

**2** Fig. 2.1 shows an underground fuel tank that is fitted with blocks of element **A** to provide sacrificial protection against rusting.

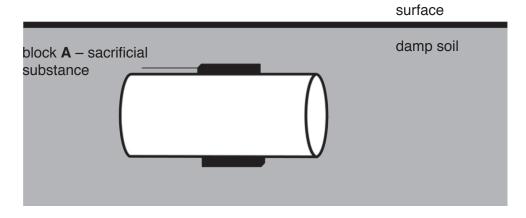



Fig. 2.1

| (a) | State the name of the element suitable for use as block A. |     |
|-----|------------------------------------------------------------|-----|
|     | Give a reason for your answer.                             |     |
|     | name of element                                            |     |
|     | reason                                                     |     |
|     |                                                            | [2] |
| (b) | Name another method of rust prevention.                    |     |
|     |                                                            | [1] |

**3** Fig. 3.1 shows the different regions of the electromagnetic spectrum.

| radio microv | /aves B | visible<br>light | ultra-violet radiation | x-rays | gamma<br>rays |
|--------------|---------|------------------|------------------------|--------|---------------|
|--------------|---------|------------------|------------------------|--------|---------------|

Fig. 3.1

| (a) | Name the region labelled <b>B</b> .                                                  |
|-----|--------------------------------------------------------------------------------------|
|     |                                                                                      |
| (b) | State <b>two</b> features common to all the members of the electromagnetic spectrum. |
|     | 1                                                                                    |
|     |                                                                                      |
|     | 2                                                                                    |
|     | [2]                                                                                  |

**4** Fig. 4.1 shows the energy changes that occur during the neutralisation of hydrochloric acid, HC*I*, by sodium hydroxide, NaOH.

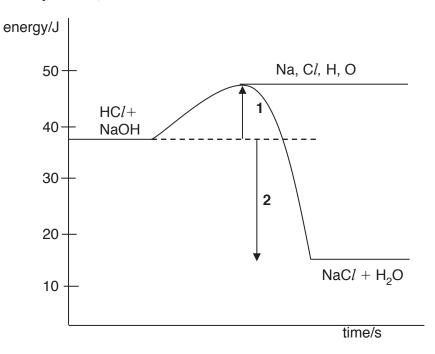



Fig. 4.1

| (a) | Explain why arrow 1 represents an endothermic process. |     |
|-----|--------------------------------------------------------|-----|
|     |                                                        |     |
|     |                                                        |     |
|     |                                                        | [2] |
| (b) | Explain why the overall reaction is exothermic.        |     |
|     |                                                        |     |
|     |                                                        | [1] |

| _        | D          | •     |           |            | £       |        | I I    |       |                         | !        |
|----------|------------|-------|-----------|------------|---------|--------|--------|-------|-------------------------|----------|
| <b>h</b> | Paccandare | ın a  | maxima    | car mova   | TORMOR  | Whan   | nrakae | ara c | עומסטווי                | anniida  |
| J        | Passengers | III a | IIIOVIIIG | cai illove | ioiwaiu | WILEII | DIANES | aics  | buuu <del>c</del> i iiv | applied. |

| (a) | State the property of mass that is demonstrated by the forward movement of the passengers as the brakes are applied. |
|-----|----------------------------------------------------------------------------------------------------------------------|
|     | [1]                                                                                                                  |
| (b) | The brakes are able to stop the car because of the presence of the force of friction.                                |
|     | Describe the force of friction.                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |

**6** Fig. 6.1 shows the apparatus used to measure the energy released by the combustion of a peanut.

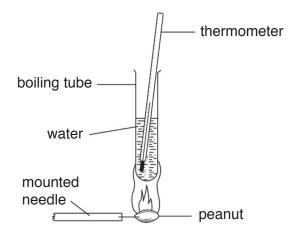



Fig. 6.1

Table 6.1 shows the results obtained.

Table 6.1

| mass of water/g | initial temperature/°C | final temperature/°C |
|-----------------|------------------------|----------------------|
| 5 g             | 24                     | 42                   |

Use the formula  $q = mc\triangle T$ , to calculate the amount of energy used to raise the temperature of the water from 24 °C to 42 °C. [specific heat capacity of water is 4.2 J/g °C]

| J | [3] |
|---|-----|
|---|-----|

7 A strontium nucleus,  $^{90}_{38}$ Sr, decays by emitting an alpha particle.

Complete the nuclear equation to show this decay.

8 Fig. 8.1 shows the electrolytic cell used to extract aluminium from its ore.

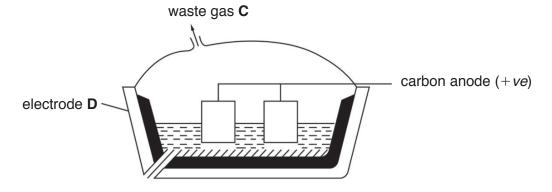



Fig. 8.1

| (a) | Suggest the name of waste gas C.                                     |     |
|-----|----------------------------------------------------------------------|-----|
|     |                                                                      | [1] |
| (b) | Explain why aluminium is used in the manufacture of food containers. |     |
|     |                                                                      |     |
|     |                                                                      | [1] |

9 Fig. 9.1 shows a diagram of an a.c. motor.

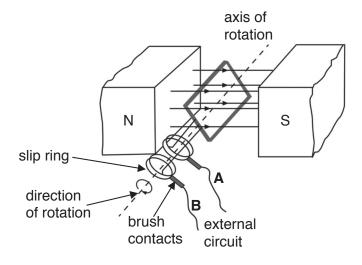



Fig. 9.1

|    | (a)                                                                                                                                                | Explain why the coil in the magnetic field experiences a turning effect when current flow<br>through it. |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    |                                                                                                                                                    |                                                                                                          |  |  |  |  |  |
|    |                                                                                                                                                    | [2]                                                                                                      |  |  |  |  |  |
|    | (b)                                                                                                                                                | State <b>one</b> way by which the speed of rotation of the motor can be reduced.                         |  |  |  |  |  |
|    |                                                                                                                                                    | [1]                                                                                                      |  |  |  |  |  |
| 10 | Zinc oxide reacts with dilute hydrochloric acid to form a salt and water as shown in the equation:                                                 |                                                                                                          |  |  |  |  |  |
|    | $ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$                                                                                                         |                                                                                                          |  |  |  |  |  |
|    | ZnO + 2HC $l$ $\longrightarrow$ ZnC $l_2$ + H $_2$ O  Zinc oxide also reacts with sodium hydroxide to form sodium zincate as shown in the equation |                                                                                                          |  |  |  |  |  |
|    | ZnC                                                                                                                                                |                                                                                                          |  |  |  |  |  |
|    | Ехр                                                                                                                                                | lain, using this information, why zinc oxide is an amphoteric oxide.                                     |  |  |  |  |  |
|    |                                                                                                                                                    |                                                                                                          |  |  |  |  |  |
|    |                                                                                                                                                    |                                                                                                          |  |  |  |  |  |
|    |                                                                                                                                                    | [2]                                                                                                      |  |  |  |  |  |

11 Fig. 11.1 shows water coming out of an irrigation sprinkler.

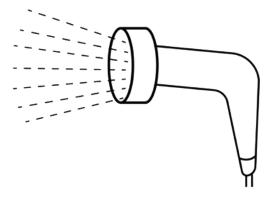



Fig. 11.1

|                                                          | Ехр                                                                                                                                                                             | lain why the water spro | eads out as it co | mes out of the spri | of the sprinkler. |     |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|---------------------|-------------------|-----|--|--|
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   | [2] |  |  |
| 12 Methane, CH4, is the main constituent of natural gas. |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          | (a)                                                                                                                                                                             | Draw a dot and cross    | diagram for a m   | ethane molecule.    |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   | [2] |  |  |
|                                                          | <ul><li>(b) Methane is a gas at room temperature and pressure.</li><li>Draw the arrangement of methane molecules, at room temperature and pressure, in the box below.</li></ul> |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |
|                                                          |                                                                                                                                                                                 |                         |                   |                     |                   |     |  |  |

**13** Fig. 13.1 shows a bar magnet, **E**, placed opposite an iron bar, **F**. The magnet attracts the iron bar.



Fig. 13.1

- (a) State the process that makes the iron bar, **F**, to be attracted by the magnet, **E**. [1]
- (b) Indicate, on Fig. 13.1, the poles of the iron bar, **F**. [1]

**14** Fig. 14.1 shows fractional distillation apparatus.

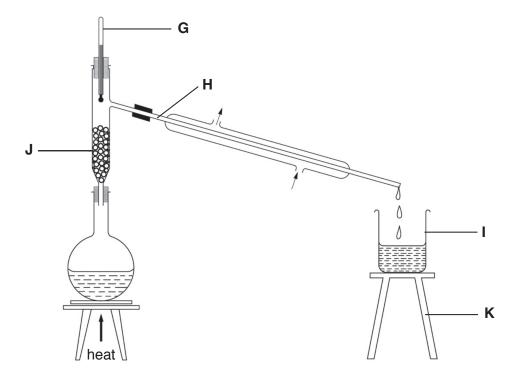



Fig. 14.1

(a) In which part, G, H, J, or K, do a gas and liquid exist together in Fig. 14.1.
 (b) Identify the part, G, H, I or J, that contains a pure substance in Fig. 14.1.

15 The jaws of a micrometer screw gauge must be kept slightly apart when it is stored as shown in Fig. 15.1.

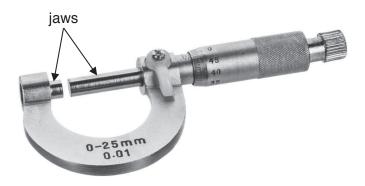



Fig. 15.1

|    | Ехр  | lain why the jaws are kept slightly apart.                                                                  |     |
|----|------|-------------------------------------------------------------------------------------------------------------|-----|
|    |      |                                                                                                             | [1] |
| 16 |      | hite crust is formed on the heating element of a kettle used to boil temporary hard wat<br>r a long period. | :er |
|    | Stat | e the chemical name of the white crust.                                                                     |     |
|    |      |                                                                                                             | [1] |
| 17 | Fig. | 17.1 shows wave motion on a slinky spring.                                                                  |     |
|    |      | <b>K</b>                                                                                                    |     |
|    |      | Fig. 17.1                                                                                                   |     |
|    | (a)  | Name the region labelled <b>K</b> , on Fig. 17.1.                                                           |     |
|    |      |                                                                                                             | [1] |
|    | (b)  | Explain why sound travels faster in solids than in gases.                                                   |     |
|    |      |                                                                                                             |     |
|    |      |                                                                                                             |     |
|    |      |                                                                                                             | [2] |

DATA SHEET
The Periodic Table of the Elements

|                            | Key               |                          | * 58-71 Lanthanoid serie<br>† 90-103 Actinoid series  | 223 <b>Fr</b> Francium 87 | 133 <b>Cs</b> Caesium 55           | Rb<br>Rb<br>Rubidium                | 39  Potassium 19             | Lithium 3 23 Na Sodium                          | -          | -        |
|----------------------------|-------------------|--------------------------|-------------------------------------------------------|---------------------------|------------------------------------|-------------------------------------|------------------------------|-------------------------------------------------|------------|----------|
| δ                          | ×                 | ω                        | 1 Lar<br>03 A                                         | 88                        | 56                                 | 38 <sub>S</sub>                     | 20                           | 12 2                                            | _          | -        |
| ь.                         | ×                 | ص<br>م                   | nthano                                                | 226<br>Radium             | 137  Barium                        | 88<br>Sr<br>Strontium               | 40<br><b>Ca</b><br>Calcium   | Be Beryllium 4 24 Mg Magnesium 12               | =          | =        |
| b = atomic (proton) number | X = atomic symbol | a = relative atomic mass | * 58–71 Lanthanoid series<br>† 90–103 Actinoid series | 227 <b>AC</b> Actinium +  | 139 <b>La</b> Lanthanum *          | 89  Yttrium                         | 45<br>Sc<br>Scandium         |                                                 |            |          |
| ton) number                | ibol              | nic mass                 |                                                       |                           | 178 <b>Hf</b> Hafnium 72           | 91<br><b>Zr</b><br>Zirconium<br>40  | 48  Titanium 22              |                                                 |            |          |
| Thorium<br>90              | Th                | 232                      | 140 <b>Ce</b> Cerium 58                               |                           | Tantalum                           | 93<br><b>Nb</b><br>Niobium          | Vanadium 23                  |                                                 |            |          |
| Protactinium<br>91         | Pa                | 231                      | 141 Pr Praseodymium 59                                |                           | Tungsten                           | 96<br><b>Mo</b><br>Molybdenum       | 52<br><b>Cr</b><br>Chromium  |                                                 |            |          |
| Uranium<br>92              | <b>C</b>          | 238                      | Neodymium 60                                          |                           | 186<br><b>Re</b><br>Rhenium        | Tc<br>Technetium<br>43              | Mn<br>Manganese              |                                                 |            |          |
| Neptunium<br>93            | Νþ                | 237                      | Promethium 61                                         |                           | 190<br><b>OS</b><br>Osmium         | 101<br>Ru<br>Ruthenium              | 56<br><b>T 0</b><br>Iron     |                                                 | 1 Hydrogen |          |
| Plutonium<br>94            | Pu                | 244                      | 150<br><b>Sm</b><br>Samarium<br>62                    |                           | 192<br><b>Ir</b><br>Iridium        | 103<br><b>Rh</b><br>Rhodium         | 59<br><b>Co</b><br>Cobalt    |                                                 |            | Gro      |
| Americium<br>95            | Am                | 243                      | 152<br><b>Eu</b><br>Europium<br>63                    |                           | 195 <b>Pt</b> Platinum 78          | 106<br><b>Pd</b><br>Palladium       | 59<br><b>Ni</b><br>Nickel    |                                                 |            | Group    |
| Curium<br>96               | Cm                | 247                      | 157<br><b>Gd</b><br>Gadolinium<br>64                  |                           | 197<br><b>Au</b><br>Gold           | 108<br><b>Ag</b><br>Silver          | 64<br><b>Cu</b><br>Copper    |                                                 |            |          |
| Berkelium<br>97            | Вĸ                | 247                      | 159<br><b>Tb</b><br>Terbium<br>65                     |                           | 201<br><b>Hg</b><br>Mercury        | 112<br>Cd<br>Cadmium                | 65<br><b>Zn</b><br>Zinc      |                                                 |            |          |
| Californium<br>98          | Ç                 | 251                      | 163<br><b>Dy</b><br>Dysprosium<br>66                  |                           | 204<br><b>T/</b><br>Thallium       | 115<br><b>In</b><br>Indium          | 70<br><b>Ga</b><br>Gallium   | Boron 5                                         |            | <b>=</b> |
| Einsteinium<br>99          | Es                | 252                      | 165<br><b>Ho</b><br>Holmium<br>67                     |                           | 207 <b>Pb</b> Lead                 | 119<br><b>Sn</b><br>Tin             | 73<br><b>Ge</b><br>Germanium | 12<br>Carbon<br>6<br>28<br>28<br>Silicon        |            | ₹        |
| Fermium<br>100             | Fm                | 257                      | 167 <b>Fr</b><br>Erbium                               |                           | 209<br><b>Bi</b><br>Bismuth        | 122<br><b>Sb</b><br>Antimony        | 75<br><b>AS</b><br>Arsenic   | Nitrogen 7 Nitrogen 7 Phosphorus                |            | <        |
| Mendelevium<br>101         | Md                | 258                      | 169 <b>Tm</b> Thullium 69                             |                           | 209<br><b>Po</b><br>Polonium<br>84 | 128<br><b>Te</b><br>Tellurium<br>52 | 79 <b>Se</b> Selenium 34     | 16 Oxygen 8 Oxygen 32 32                        | 5          | <b>≤</b> |
| Nobelium<br>102            | No                | 259                      | 173<br><b>Yb</b><br>Ytterbium                         |                           | 210 <b>At</b> Astatine 85          | 127<br><b>I</b><br>lodine<br>53     | 80 <b>Br</b> Bromine         | Fluorine 9 S5.5 Q2                              |            | <u></u>  |
| Lawrencium<br>103          | Ļ                 | 260                      | 175<br><b>Lu</b><br>Lutetium                          |                           | 222<br><b>Rn</b><br>Radon<br>86    | 131 <b>Xe</b> Xenon 54              | 84<br><b>X</b><br>Krypton    | 20<br>Ne<br>10 Neon<br>40<br><b>Ar</b><br>Argon | 4 4 Helium | <b>D</b> |
| )21                        |                   |                          |                                                       |                           |                                    | 6888/01/                            | O/N/2021                     | ·                                               |            |          |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

© ECESWA 2021 6888/01/O/N/2021